Minimax Programs

T. C. Hu and P. A. Tucker*
Department of Computer Science and Engineering,
School of Engineering,

University of California, San Diego
La Jolla, CA 92093
hu@cs.ucsd.edu ptucker@cs.ucsd.edu

Technical Report CS97-547
June 16, 1997

Abstract

We introduce an optimization problem called a minimax program
that is similar to a linear program, except that the addition opera-
tor is replaced in the constraint equations by the maximum operator.
We clarify the relation of this problem to some better-known prob-
lems. We identify an interesting special case and present an efficient
algorithm for its solution.

1 Introduction

Over the last fifty years, thousands of problems of practical interest have been
formulated as a linear program. Not only has the linear programming model
proven to be widely applicable, but ongoing research has discovered highly
effective algorithms for solution of various classes of linear programs. Linear
programming represents one of the major achievements of the operations
research and mathematical programming community.

*Supported in part by a National Science Foundation Graduate Fellowship.

www.manaraa.com

In this paper we introduce an optimization problem we call a “minimax
program” that very much resembles a linear program. The task is still to
minimize a linear function, but in the constraint inequalities we replace the
addition operator with the mazimum operator. With this change we obtain
a problem formulation that straightforwardly captures the structure of some
real optimization problems. The problem also turns out to be NP-complete,
with a close similarity to set cover.

In this paper we describe an efficient algorithm for solving an interesting
subclass of minimax programs, those whose constraint matrices have columns
with the “mountain property,” which is a generalization of the consecutive
ones property (i.e., the rows can be permuted so that entries in each column
first increase, then decrease). A separate paper [7] introduces an efficient
algorithm for recognition of matrices with this property.

The rest of this paper is organized as follows. Section 2 defines a mini-
max program. Section 3 describes its relation to other problems. Section 4
identifies an interesting and practical special case that can be solved quickly.
Section 5 presents an efficient algorithm for that case. Section 6 describes a
sample application.

2 A Minimax Program

In a linear program the task is to

min Y ¢ J=1,...,n)
subject to (1)
Zaijl']‘ Z bZ (izl,...,m)
€5 Z 0

The linear program model assumes linearity of both the objective function
and the constraint inequalities. Implicit in the linearity of constraints is
additivity of the basic vectors in satisfying the requirement vector b.

A simple example of a typical linear programming application is the se-
lection of food servings to satisfy nutritional requirements at minimum cost.
Suppose there are n kinds of food to choose from, while m different nutrient
requirements are to be fulfilled. In this example, the additivity assumption
is justified because the nutritional properties of food are believed to be ad-
ditive. The daily requirement for protein, for example, can be satisfied by

www.manaraa.com

eating a mix of food servings throughout the day whose protein contents
sum to the requirement. It is not necessary to eat a single large serving of
one food sufficient to satisfy the protein requirement by itself, and each food
serving can contribute to the satisfaction of many nutritional requirements.

However, the additivity assumption does not always hold. Consider a
slight variation on the problem where instead of purchasing food, our goal
is to purchase poisons to kill a mixture of household pests. The essential
difference is that we assume the effects of different kinds of poison are inde-
pendent. We suppose that all of the poisons are to be applied sequentially
or even simultaneously (perhaps by fumigating the house), and for each poi-
son there is a lethal dose associated with each species of pest. If we apply
more than the lethal dose the pest population will be exterminated, but any-
thing significantly less than that dose will not noticeably harm the pests.
Moreover, if we apply a sub-lethal dose of one poison, the lethal dose of a
second poison, towards the same pest species, is not reduced. Because the
mechanisms of action of different kinds of poison are different, the pests can
survive sub-lethal doses of a number of different poisons within a short period
of time. In purchasing a minimum cost blend of poisons, we have to ensure
that it contains a lethal dose of at least one poison for every pest species.

If we suppose there are n kinds of poison to choose from, and m species
of pest to exterminate, the problem can be modeled by the same structure
as a linear program, except that we replace the addition operator in the
constraint inequalities with the maximum operator.

min e G=1,...,n)
subject to 2)
max;(a; ;x;) > b (e=1,...,m)
€5 Z 0.

We call this problem formulation a minimaz program. Minimax programs can
arise as a natural problem formulation in domains such as software testing
by a mixture of test methods [4], an application to be discussed Section 6.
It is convenient to define a standard form for minimax programs. First
it should be observed that there is no need for the presence of negative
coefficients in the cost or requirement vectors, or in the constraint matrix A.
If negative coefficients are present we can eliminate them through arithmetic
manipulation, or replace them by 0 without affecting the optimal solution, or
they cause the problem to be unbounded and hence not well-formulated. So

www.manaraa.com

without loss of generality we can require that all coefficients be non-negative.
Then, since there is no integer restriction on coefficients, we can normalize
the cost and requirement vectors to 1. The result is a standard form in which
the minimax problem is completely described by its constraint matrix A.

min o J=1,...,n)
subject to
max;(a;x;)

L Gi=1,...,m) (3)

(VALY

Ly

As an illustration, let the constraint matrix A in (3) be as follows.

T1 Xy T3 Tyg Ts g
1 1 1 1
3 2 0 0 3 8 (4)
L9 1 o L1 1
i o1 101
s 00 5 3% 3

Then the minimax program (3) with constraint coefficients (4) has many
feasible solutions such as

i) z1 = 8 with total cost 8
i) w9 =2,x3=3,x4 =4 with total cost 9

i) x4 = 4,25 =4 with total cost 8
i) x5 = 3,26 =4 with total cost 7.

e =

3 Relation to Other Problems

Consider the usual integer program formulation of an arbitrary instance of

set cover.
min > CiT;
subject to
1 010
11 0 1], -
>
11 10]%2 !
01 11
r; € It
4

www.manaraa.com

The constraint matrix A is (0,1), and the requirement vector b is 1. If we
take these same parameters and put them into the minimax program model,
in other words change the constraint inequalities to

max(xy, 0, x3, 0)>1
max(x1, 2, 0, x4)>1
max(xy, 2, x3, 0)>1
max(0, w3, w3, x4)>1

and eliminate the integer requirement, then the optimal solutions are un-
changed. When the matrix is (0,1) and the requirement vector is 1, using
the maximum operator in the constraints has the same effect as the addition
operator in combination with the integer requirement. Any feasible solution
to the minimax program is feasible for the integer program, and vice versa.
Consequently there is a straightforward reduction of any set cover problem,
using the parameters of its integer program formulation, into a minimax
program. It follows that optimization of minimax programs is NP-complete.

There is also a reduction of any minimax program to an equivalent set
cover problem in integer program formulation. The reduction technique in-
volves expanding each column of the minimax constraint matrix into a series
of (0,1) columns, one for each row in the original matrix, and assigning ap-
propriate cost coefficients to the columns. In particular, for every constraint
coefficient a;; of a minimax program in standard form, the corresponding
integer program contains a column j; where

¢j; = 1/ai
and

1if (9 Z 5
an .. = .
kg 0 otherwise

for all rows 1 < k£ < m. The following simple example illustrates this reduc-
tion. The minimax program with unit costs and constraint inequalities

T1 Ty T3

5 1 1 1
max| oo, og | 2
1 1 4 1
x; > 0
5

www.manaraa.com

is equivalent to an integer program with the following (0, 1) constraint matrix
and cost coefficients.

1 1

1
X1, 521, 11’13 11’21

1
5 5 1 11’23 11’31 —1’32 Z$33

3
1 1 1 1 0 1 1 0 0 > 1
0 1 1 1 1 1 1 1 0 - 1
0 0 1 1 0 1 1 1 1 1

r; € It

2

This reduction shows that a minimax program can be viewed as a compact
representation of a set cover instance whose coefficients allow columns of the
constraint matrix to be packed together.

A minimax problem can be solved by expanding it into an integer pro-
gram, then applying any solution technique appropriate to a set cover prob-
lem in that formulation. However, the expansion incurs a penalty by inflating
the problem representation size by a factor of O(m). In a special case to be
considered in the next section, an exact solution to the minimax program
can be obtained with a time complexity less than that of the reduction to
set cover.

4 A Fast Special Case

Among NP-complete problems that have a graph representation it is known
that instances with the interval graph property can often be solved efficiently,
even in linear time (e.g., Hamilton circuit [5] and vertex cover [6]).

The interval graph property is intimately related to the consecutive ones
property of (0,1) matrices [2]. A matrix has this property if its rows can be
permuted such that all ones in every column are consecutive.

Although having the interval property is a significant restriction on the
general class of graphs, interval graphs have the virtue of corresponding to
many problems that arise naturally in the real world. The graph proximity
corresponding to the intervals can model physical or temporal proximity con-
straints in many application contexts. For example, Fulkerson and Gross’s
paper [2] arose out of a study of genetic mutations where the interval prop-
erty modeled adjacency in a DNA strand. A number of scheduling problems,
whether for rooms or processors, turn out to have the interval graph property

www.manaraa.com

when represented as a graph coloring problem where edges indicate incompat-
ibilities. Interval graphs also play a part in practical algorithms for synthesis
and physical layout of circuit designs.

4.1 Linear Time Set Covering for Consecutive Ones

As an illustration of the efficiency with which problem instances with the
interval graph property can be solved, and in preparation for the broader
special case of minimax programs we next address, we present a simple linear
time algorithm for unweighted set covering when the problem matrix has
consecutive ones.

Using the integer program formulation of set cover, we assume that the
constraint (set membership) array A is presented in a conforming permuta-
tion so that all ones are consecutive in every column. The algorithm first
scans the array once to record the number of consecutive ones beginning in
each position and continuing down in the same column. It then adopts a
greedy strategy of scanning uncovered rows in order. It picks the column
that covers the most consecutive rows starting with the first row, and then
repeats the same strategy from the topmost uncovered row.

Assume that covers is a temporary array of dimension equal to A, and
initially, all 2; = 0.

CONSECUTIVE-ONES-SET-COVER:
for (¢ — m down to 1) do
for (j— 1ton)do
if (matli, j] = 0) then covers[i, j] « 0
else if (i = m) then covers|i, j] « 1
else coversi, j] « covers[t + 1, 7] + 1
t 0
while (i <m) do
Scan row covers[i] for the max entry covers|i, .
x; 1
i+ 1+ coversli, j]

At the completion of this algorithm a minimal sized cover has been found, in
time O(mn) which is linear in the size of the input. This simple algorithm
does not work for weighted set cover. Hoffman [3] identifies a broader range of

www.manaraa.com

cases (including weights) for which a greedy algorithm does find the optimal
solution to a combinatoric problem in integer program formulation.

4.2 Bitonic Columns

One natural generalization of the consecutive ones property of a matrix
is what we call the mountain property. for some permutation of the rows
the values in every column are non-decreasing to some midpoint, then non-
increasing thereafter (examining entries from top to bottom). The profile of
each column looks like a mountain peak. More formally, a matrix has the
mountain property if its rows can be permuted so that for each column j
there exists an index ¢ such that

aljﬁagjﬁ...ﬁ 5 ZCLH_L]‘Z...ZGTM‘. (5)

The midpoint index ¢ can be different for each column. A symmetric prop-
erty is the valley property in which the values in all columns decrease to a
midpoint, then increase on the other side (in some row permutation). Since
in each case the values in a column must first monotonically progress in one
direction, then monotonically progress in the opposite direction, we refer to
these properties collectively as bitonic column properties.

One could further generalize the bitonic column concept to allow for a
combination of mountain and valley columns in the same matrix, but in this
paper we only make use of homogeneous bitonic column properties, where
every column is a mountain, or every column is a valley.

A bitonic column property is significant because when the matrix is in
conforming permutation we are guaranteed that each column has no non-
adjacent local maxima or minima. Thus, the property is somewhat analogous
to the concept of convexity, and similarly leads to efficient algorithms.

In solving a minimax program it is more convenient, for computational
purposes, to deal with a cost matrix C' where ¢;; = 1/a;;. For example, the
cost matriz corresponding to the constraint matrix in (4) is

1 L2 X3 X4 IT5 Te
3 2 oo oo 3 8
4 o0 3 oo 4 4 (6)
8 oo oo 4 10 4.

www.manaraa.com

It is easily seen that when the constraint matrix has the mountain property,
the corresponding cost matrix has the valley property.

In the next section we present a fast algorithm for solving minimax pro-
grams when the cost matrix has the valley property. Its time complexity
is linear when the number of columns is at least as large as the number of
rows. We conjecture that bitonic column properties imply efficient solution
techniques for other problems as well.

5 Solving Minimax Programs with Valley
Costs

It the cost matrix ' corresponding to a minimax program has the valley
property, then its rows can be permuted so that within any column the &
smallest entries are all adjacent, for any k. This situation is amenable to
solution by an efficient algorithm, described below. A companion paper [7]
gives an O(mn logm) algorithm for finding such a permutation, if one exists.
Here we assume that the input is presented as a cost matrix in conforming
permutation.

The algorithm falls into the dynamic programming paradigm; conse-
quently it can be conceptualized as iteratively operating on a table. We
describe it as constructing and then operating on a network in order to illus-
trate its similarity to a shortest-path algorithm.

Recall that a minimax program in standard form (3) has been normalized
so that all RHS coeflicients b; and all objective function coefficients ¢; are
1. The algorithm takes as input a cost matrix obtained from the constraint
matrix by the identity ¢;; = 1/a,;;. We assume that the rows of the cost
matrix are in a permutation where the valley property holds. If necessary,
the algorithm given by Tucker [7] can be used as preprocessing to obtain a
conforming permutation.

The algorithm begins by constructing a network data structure consisting
of m + 1 vertices, indexed 0,1,...,m. Vertices will be joined by weighted,
directed arcs from vertices of smaller index to vertices of larger index.

Each column can potentially contribute m arcs. An arc from vertex ¢
to vertex j indicates the cost of “covering” rows ¢ — 1 to j (i.e., satisfying
the constraints imposed by those rows) by the associated column variable.

www.manaraa.com

When two or more columns would contribute an arc joining the same pair of
vertices, we select only the best arc (i.e., the arc of minimum cost).

The network arcs are constructed from the matrix entries by repeating
the following process for each column, taking the columns in any order. (An
illustrative example follows.) First we scan down the column to discover
the minimum value. In case of ties, any minimum value is fine. From that
midpoint we then start two pointers scanning in opposite directions, towards
the top and bottom of the column. We iteratively move these pointers far-
ther apart so as to discover successively higher cost coefficients in increasing
order. Each new higher value identifies a span of rows (between the two
pointers) that is covered by setting the column variable to that cost. As
each successively larger span is discovered, we update the network with an
arc from the vertex before the first covered row, to the vertex corresponding
to the last covered row, whose weight is the covering cost. If an arc (¢, k)
already exists, we set its cost to the minimum of its existing cost and the
covering cost represented by the current column. In addition, we annotate
each arc with the index of the column variable whose covering capability it
represents. Clearly, we consider the addition of O(mn) arcs to the network,
and no more than O(m?) will exist at any time, including after all columns
have been processed.

An algorithmic presentation of this procedure is given as BUILD-NETWORK.
We assume that the network is represented as an upper triangle adjacency
matrix, so existence of an arc between two vertices can be checked in constant
time.

An example of applying this procedure to the following cost matrix C' is
shown in Figure 1.

1
1
1
3

Q

Il
— D DN Lo Ot
e = = DN

4

Figure 1(a) shows the result after processing the first column; sub-figures (b)
and (c) show the result after processing the second and third columns.
Once the row cost network has been constructed, discovery of the optimal
solution to the original problem essentially corresponds to finding a shortest
path from vy to v,,, interpreting the arc weights as distances. In general this

10

www.manaraa.com

BUILD-NETWORK:
Begin with vertices vy, ..., v,, initialized for no arcs,
and an m X n cost matrix c.
for (1<j5<n)do
Scan [, 7] from the top to find the minimum entry [z, j].
Set min_entry «— c[z,j]; top «— z; bot «— z.
while (top > 1 or bot < m) do
Decrement top and increment bot until ¢[top, j]
and c[bot, 7] are the farthest apart two column entries
that are each > mun_entry and
< (the smallest column entry > min_entry).
{In the first iteration, both c[top, j], c[bot, j]
must be equal to min_entry. At any time,
if either top or bot reaches 1 or m, then only increment
or decrement the other.}
The arc (vip—1,vpot) 18 a potential arc: add it to the network
only if it does not already exist.
Then set w(vip—1, Vsot) to the minimum of its pre-existing weight
(oo if it didn’t exist) and [z, j].
If we added the arc or updated its cost,
also set column(Viop—1, Vpot) < J-
Set min_entry « max(c[top, j], c[bot, j]).

can be done in O(V?) or O(E log V') time by Dijkstra’s algorithm. For a DAG
with a single source, such as our network, there is a well known algorithm
(as described in Cormen, et al. [1]) that merely takes the vertices in order
V0, -« -+, Um—1, relaxing all arcs once, and requires only O(F) time. (Relazation
of an arc (¢,7) involves conditionally updating d(j) to d(z) + w(e,7) if that
operation decreases d(7).)

However, these standard algorithms find only paths consisting of explic-
itly represented arcs, and our network contains implicit arcs as well. For
example, in Figure 1(c) there is an arc with weight 1 from vy to vs indi-
cating that assigning x3 = 1 covers the first three rows; implicitly there

11

www.manaraa.com

Figure 1: Initial Row Cost Network

(@

column 1
--------- column 2
column 3

12

www.manharaa.com

are also weight 1 arcs connecting all pairs of vertices in {vg, v1, vs,v3} of in-
creasing index. The shortest path explicitly represented in the network is
(vo,v4), (v4,v5) (among others) with distance 4, but in fact there is a cover-
ing path of distance 3 corresponding to arcs (vg, v3), (vq,v5). Our network
construction algorithm only builds a minimal set of arcs. If we were to ex-
plicitly build all arcs, the amount of work required in construction would
be O(m?n). Alternatively, extending the standard shortest path algorithm
naively to relax all implicit arcs could require O(m?) time. Our SHORTEST-
PATH procedure relaxes only non-dominated implicit arcs, in addition to the
explicit arcs, and runs in O(m?) time.

SHORTEST-PATH iterates over all vertices in order of increasing index.
For each vertex, it iterates over all arcs originating in that vertex, in order of
increasing length. Fach arc is relaxed, along with all of its (shorter) implicit
arcs that are not dominated by (i.e., more expensive than) another explicit
arc originating in the same vertex. At termination d(m) gives the minimum
cost of a solution, and the actual variable assignments can be recovered by
tracing backwards along the predecessor(¢) values, from m.

SHORTEST-PATH:
for (1 — 1tom)do
d(v;) « o0
d(vg) < 0
for (1 —0tom—1)do
lower_lim « 1
for (each arc (¢,7) in order of increasing j) do
for (k — j down to lower_lim) do
if d(i)+ w(i,j) < d(k) then
d(k) «— d(i) + w(i,j)
predecessor(k) «— 1
lower_lim « j

Figure 2 shows the results of computing the shortest path in the network
constructed in Figure 1. The distance of each vertex is shown within the
vertex, and the weights of the two arcs constituting the shortest path are

13

www.manaraa.com

Figure 2: Shortest Path Computed

column 1
--------- column 2
column 3

14

www.manharaa.com

marked by squares. In this case, (vg,vs) from column 3 and (vg,vs) from
column 1 are the optimal row covers, so the optimal solution is

r1=2,205=0,23 = 1; Zl‘j = 3.

5.1 Correctness

We will give an informal proof that BUILD-NETWORK followed by SHORTEST-
PATH correctly yields an optimal solution to a minimax program whose cost
matrix has the valley property.

Note that an optimal solution to a minimax program corresponds to a
minimum cost covering of the cost matrix rows. We say z; covers row ¢ if
xj > ¢;; because then x; > 1/a;; and the ith constraint is satisfied:

max(a;jx;) > 1.
J

We say that a collection of arcs covers the row cost network if for every
adjacent pair of vertices v;,v;41 the collection contains an arc (vp,vy) such
that

h <1<k

Therefore, in order to prove correctness it suffices to establish the following:

1. If the cost matrix C' has the valley property, then a minimal cost cov-
ering of all of (s rows corresponds one-to-one with a minimal weight
set of covering arcs in the row cost network constructed by BUILD-
NETWORK.

2. SHORTEST-PATH finds a minimal weight set of covering arcs in the row
cost network.

First, consider an arbitrary cost matrix with the valley property. In
consequence of the valley property definition, if z; covers any rows, it covers
a consecutive group of rows. It should be easy to see that for such a matrix
BUILD-NETWORK constructs maximum length, minimum weight arcs in the
row cost network where the span and weight of an arc exactly correspond to
the rows covered by setting some z; to that weight value. In case exactly
the same span can be covered by two different variables, the arc will have
the lighter covering weight and be annotated with the column index of the

15

www.manaraa.com

cheaper covering variable. Consequently, if x,,...,2; > 0 and all other
x; = 0 is a feasible solution, there must exist some (not necessarily distinct)
arcs €q,...,ex in the network such that w(e;) < z,,...,w(er) < a3 and
collectively the arcs cover the network. Simultaneously, if ey,...,e; is a
sequence of arcs that cover the network, then x, = w(ey),..., 1, = w(eg) is
a feasible solution, where a = column(ey),...,b = column(ex). From all this
it follows that an optimal solution to the minimax program corresponds to
a minimum weight collection of arcs that cover the row cost network.

Next we show that SHORTEST-PATH finds such a minimum weight col-
lection of arcs. A minimum weight covering collection in the network cor-
responds to a shortest path from vy to v, if we interpret arc weights as
distances and allow any arc (vp,v;) to be used to pass from any v; to any v;
so long as h <1 < j < k. In effect, a covering collection corresponds to a
shortest path when we allow that each explicit arc in the collection represents
a set of implicit arcs.

SHORTEST-PATH essentially differs from the standard shortest-path algo-
rithm for DAGs only in its handling of implicit arcs. The standard algorithm
walks through vertices vy, vy, ..., v, in order and relaxes all outgoing arcs. By
the justification establishing correctness of that algorithm, SHORTEST-PATH
would be correct if it relaxed all implicit arcs in addition to the explicit arcs.
However, for an explicit arc (¢, k), our algorithm only relaxes implicit arcs
(7,7) where w(z,7) = w(i, k) and j < k if there does not exist a dominating
arc (i, h). Arc (¢, h) dominates (¢,) if

h > jand w(i, h) <w(t,j).

Our algorithm is correct if any minimum cost path can be constructed solely
from explicit arcs and the subset of implicit arcs that we relax.

Consider any arbitrary dominated implicit arc (¢, j): since it is dominated
there must exist a closest fitting dominating explicit arc

(h, k) where w(h, k) < w(i,j) and h <o < 5 <k,
such that there does not exist any distinct dominating arc
(W', k') where h < h' < k' <k.

Since, in our row cost network, vertex distances are monotonically increasing
with vertex index, d(h) < d(7). By the rules for relaxation of explicit arcs,

16

www.manaraa.com

the implicit arc (h, j) will be relaxed, so
d(j) < d(h) + w(h, k).
Relaxation of (i, 7) cannot set d(j) lower than
d(i) +w(i, j) > d(h) + w(h, k),

so relation of dominated implicit arcs cannot improve the solution.

5.2 Complexity

It should be clear that BUILD-NETWORK does O(m) work for each column,
since it scans each column twice and does no more than a constant amount of
work for each entry. (Checking whether an arc exists, and possibly updating
its entry can be done in constant time if we keep an O(m?) size array of arc
data.) The network it constructs has m + 1 vertices and O(min(m?, mn))
arcs. Hence BUILD-NETWORK runs in O(mn) time and uses O(m?) space.
At each vertex : SHORTEST-PATH performs exactly one relaxation for every
vertex j such that an explicit arc (¢, k) exists where 1 < j < k. Since the
arcs out of ¢ can be found in order of decreasing length by scanning one
O(m)-length row of the arc array, SHORTEST-PATH does O(m) work at each
vertex for an overall time complexity of O(m?).

Therefore, the optimal solution of a minimax program whose cost matrix
has the valley property, and has been put in a conforming permutation, can
be discovered in O(mn + m?) time using O(m?*) space, which is linear in the
size of the input when n > m.

6 Applications

We would like to finish by describing a real application whose description
preceded our exploration of this topic, to illustrate how the minimax program
formulation can naturally capture the structure of a practical optimization
problem.

Huang’s thesis [4] on software dependability measurement investigated a
metric called trustability (7') that represents the degree of confidence that
a program being tested is free of faults. If D represents the probability of

17

www.manaraa.com

detecting a fault by applying a particular stochastic test method, then after
N error-free applications of that test method, the trustability of the program
is

T=1-(1-D)N.
(We have slightly simplified Huang’s formulae for this presentation.) More

generally, suppose there are m fault classes and n test methods, then trusta-
bility after an uninterrupted series of successful tests is
— _ 1 _ VLY
T'=1- max{min {(1 - D)™ }} (7)

where D;; is the probability that method j detects a fault in class 7, and N;
is the number of times method j has been applied. Equation (7) has a max-
min structure because the testing methods are assumed to be probabilistic,
so their effects are independent, rather than additive.

An optimization problem that arises in this context is to minimize the
amount of effort devoted to testing,

FE = Z C]‘N]‘

=1

subject to the constraint that a minimal value of T" > Tj is attained. This
problem can be converted to a minimax program of form (3) where ; = N;
and

o 10g(1 — D”)
i = cjlog(1 —Ty)

Acknowledgments

We are very grateful to Dr. Alan J. Hoffman for references and comments
that helped to clarify this material.

References

[1] CorMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

18

www.manaraa.com

[2] FULKERSON, D. R., AND GROSS, O. A. Incidence matrices and interval
graphs. Pacific Journal of Mathematics 15 (1965), 835-855.

[3] HOFFMAN, A. J. On simple combinatorial problems. Discrete Mathe-
matics 106/107 (1992), 285-289.

[4] HuaNG, Y. Software Dependability Measurement during Testing. PhD
thesis, University of California, San Diego, La Jolla, CA, 1994.

[5] KEIL, J. M. Finding Hamiltonian circuits in interval graphs. Information
Processing Letters 20 (1985), 201-206.

[6] MARATHE, M. V., Ravi, R., AND RANGAN, C. P. Generalized vertex
covering in interval graphs. Discrete Applied Mathematics 39 (1992),

87-93.

[7] TuCKER, P. A. Efficient testing for a bitonic column property. Tech.
Rep. CS97-546, Department of Computer Science and Engineering, Uni-
versity of California, San Diego, June 1997.

19

www.manaraa.com

