
www.manaraa.com

Minimax ProgramsT. C. Hu and P. A. Tucker�Department of Computer Science and Engineering,School of Engineering,University of California, San DiegoLa Jolla, CA 92093hu@cs.ucsd.edu ptucker@cs.ucsd.eduTechnical Report CS97-547June 16, 1997AbstractWe introduce an optimization problem called a minimax programthat is similar to a linear program, except that the addition opera-tor is replaced in the constraint equations by the maximum operator.We clarify the relation of this problem to some better-known prob-lems. We identify an interesting special case and present an e�cientalgorithm for its solution.1 IntroductionOver the last �fty years, thousands of problems of practical interest have beenformulated as a linear program. Not only has the linear programming modelproven to be widely applicable, but ongoing research has discovered highlye�ective algorithms for solution of various classes of linear programs. Linearprogramming represents one of the major achievements of the operationsresearch and mathematical programming community.�Supported in part by a National Science Foundation Graduate Fellowship.1

www.manaraa.com

In this paper we introduce an optimization problem we call a \minimaxprogram" that very much resembles a linear program. The task is still tominimize a linear function, but in the constraint inequalities we replace theaddition operator with the maximum operator. With this change we obtaina problem formulation that straightforwardly captures the structure of somereal optimization problems. The problem also turns out to be NP-complete,with a close similarity to set cover.In this paper we describe an e�cient algorithm for solving an interestingsubclass of minimax programs, those whose constraint matrices have columnswith the \mountain property," which is a generalization of the consecutiveones property (i.e., the rows can be permuted so that entries in each column�rst increase, then decrease). A separate paper [7] introduces an e�cientalgorithm for recognition of matrices with this property.The rest of this paper is organized as follows. Section 2 de�nes a mini-max program. Section 3 describes its relation to other problems. Section 4identi�es an interesting and practical special case that can be solved quickly.Section 5 presents an e�cient algorithm for that case. Section 6 describes asample application.2 A Minimax ProgramIn a linear program the task is tomin P cjxj (j = 1; : : : ; n)subject to P aijxj � bi (i = 1; : : : ;m)xj � 0: (1)The linear program model assumes linearity of both the objective functionand the constraint inequalities. Implicit in the linearity of constraints isadditivity of the basic vectors in satisfying the requirement vector b.A simple example of a typical linear programming application is the se-lection of food servings to satisfy nutritional requirements at minimum cost.Suppose there are n kinds of food to choose from, while m di�erent nutrientrequirements are to be ful�lled. In this example, the additivity assumptionis justi�ed because the nutritional properties of food are believed to be ad-ditive. The daily requirement for protein, for example, can be satis�ed by2

www.manaraa.com

eating a mix of food servings throughout the day whose protein contentssum to the requirement. It is not necessary to eat a single large serving ofone food su�cient to satisfy the protein requirement by itself, and each foodserving can contribute to the satisfaction of many nutritional requirements.However, the additivity assumption does not always hold. Consider aslight variation on the problem where instead of purchasing food, our goalis to purchase poisons to kill a mixture of household pests. The essentialdi�erence is that we assume the e�ects of di�erent kinds of poison are inde-pendent. We suppose that all of the poisons are to be applied sequentiallyor even simultaneously (perhaps by fumigating the house), and for each poi-son there is a lethal dose associated with each species of pest. If we applymore than the lethal dose the pest population will be exterminated, but any-thing signi�cantly less than that dose will not noticeably harm the pests.Moreover, if we apply a sub-lethal dose of one poison, the lethal dose of asecond poison, towards the same pest species, is not reduced. Because themechanisms of action of di�erent kinds of poison are di�erent, the pests cansurvive sub-lethal doses of a number of di�erent poisons within a short periodof time. In purchasing a minimum cost blend of poisons, we have to ensurethat it contains a lethal dose of at least one poison for every pest species.If we suppose there are n kinds of poison to choose from, and m speciesof pest to exterminate, the problem can be modeled by the same structureas a linear program, except that we replace the addition operator in theconstraint inequalities with the maximum operator.min P cjxj (j = 1; : : : ; n)subject to maxj(aijxj) � bi (i = 1; : : : ;m)xj � 0: (2)We call this problem formulation aminimax program. Minimax programs canarise as a natural problem formulation in domains such as software testingby a mixture of test methods [4], an application to be discussed Section 6.It is convenient to de�ne a standard form for minimax programs. Firstit should be observed that there is no need for the presence of negativecoe�cients in the cost or requirement vectors, or in the constraint matrix A.If negative coe�cients are present we can eliminate them through arithmeticmanipulation, or replace them by 0 without a�ecting the optimal solution, orthey cause the problem to be unbounded and hence not well-formulated. So3

www.manaraa.com

without loss of generality we can require that all coe�cients be non-negative.Then, since there is no integer restriction on coe�cients, we can normalizethe cost and requirement vectors to ~1. The result is a standard form in whichthe minimax problem is completely described by its constraint matrix A.min P xj (j = 1; : : : ; n)subject to maxj(aijxj) � 1 (i = 1; : : : ;m)xj � 0 (3)As an illustration, let the constraint matrix A in (3) be as follows.x1 x2 x3 x4 x5 x613 12 0 0 13 1814 0 13 0 14 1418 0 0 14 110 14 (4)Then the minimax program (3) with constraint coe�cients (4) has manyfeasible solutions such as(i) x1 = 8 with total cost 8(ii) x2 = 2; x3 = 3; x4 = 4 with total cost 9(iii) x4 = 4; x5 = 4 with total cost 8(iv) x5 = 3; x6 = 4 with total cost 7.3 Relation to Other ProblemsConsider the usual integer program formulation of an arbitrary instance ofset cover. min P cjxjsubject to 26664 1 0 1 01 1 0 11 1 1 00 1 1 1 37775~x � ~1xj 2 I+4

www.manaraa.com

The constraint matrix A is (0; 1), and the requirement vector b is ~1. If wetake these same parameters and put them into the minimax program model,in other words change the constraint inequalities tomax(x1; 0; x3; 0) � 1max(x1; x2; 0; x4) � 1max(x1; x2; x3; 0) � 1max(0; x2; x3; x4) � 1and eliminate the integer requirement, then the optimal solutions are un-changed. When the matrix is (0; 1) and the requirement vector is ~1, usingthe maximum operator in the constraints has the same e�ect as the additionoperator in combination with the integer requirement. Any feasible solutionto the minimax program is feasible for the integer program, and vice versa.Consequently there is a straightforward reduction of any set cover problem,using the parameters of its integer program formulation, into a minimaxprogram. It follows that optimization of minimax programs is NP-complete.There is also a reduction of any minimax program to an equivalent setcover problem in integer program formulation. The reduction technique in-volves expanding each column of the minimax constraint matrix into a seriesof (0; 1) columns, one for each row in the original matrix, and assigning ap-propriate cost coe�cients to the columns. In particular, for every constraintcoe�cient aij of a minimax program in standard form, the correspondinginteger program contains a column ji wherecji = 1=aijand ak;ji = (1 if akj � aij0 otherwisefor all rows 1 � k � m. The following simple example illustrates this reduc-tion. The minimax program with unit costs and constraint inequalitiesmax26664 x1 x2 x35 1 12 4 31 1 4 37775 � 111xj � 05

www.manaraa.com

is equivalent to an integer program with the following (0; 1) constraint matrixand cost coe�cients.sum26664 15x11 12x12 1x13 1x21 14x22 1x23 1x31 13x32 14x331 1 1 1 0 1 1 0 00 1 1 1 1 1 1 1 00 0 1 1 0 1 1 1 1 37775 � 111xji 2 I+This reduction shows that a minimaxprogram can be viewed as a compactrepresentation of a set cover instance whose coe�cients allow columns of theconstraint matrix to be packed together.A minimax problem can be solved by expanding it into an integer pro-gram, then applying any solution technique appropriate to a set cover prob-lem in that formulation. However, the expansion incurs a penalty by in
atingthe problem representation size by a factor of O(m). In a special case to beconsidered in the next section, an exact solution to the minimax programcan be obtained with a time complexity less than that of the reduction toset cover.4 A Fast Special CaseAmong NP-complete problems that have a graph representation it is knownthat instances with the interval graph property can often be solved e�ciently,even in linear time (e.g., Hamilton circuit [5] and vertex cover [6]).The interval graph property is intimately related to the consecutive onesproperty of (0; 1) matrices [2]. A matrix has this property if its rows can bepermuted such that all ones in every column are consecutive.Although having the interval property is a signi�cant restriction on thegeneral class of graphs, interval graphs have the virtue of corresponding tomany problems that arise naturally in the real world. The graph proximitycorresponding to the intervals can model physical or temporal proximity con-straints in many application contexts. For example, Fulkerson and Gross'spaper [2] arose out of a study of genetic mutations where the interval prop-erty modeled adjacency in a DNA strand. A number of scheduling problems,whether for rooms or processors, turn out to have the interval graph property6

www.manaraa.com

when represented as a graph coloring problemwhere edges indicate incompat-ibilities. Interval graphs also play a part in practical algorithms for synthesisand physical layout of circuit designs.4.1 Linear Time Set Covering for Consecutive OnesAs an illustration of the e�ciency with which problem instances with theinterval graph property can be solved, and in preparation for the broaderspecial case of minimax programs we next address, we present a simple lineartime algorithm for unweighted set covering when the problem matrix hasconsecutive ones.Using the integer program formulation of set cover, we assume that theconstraint (set membership) array A is presented in a conforming permuta-tion so that all ones are consecutive in every column. The algorithm �rstscans the array once to record the number of consecutive ones beginning ineach position and continuing down in the same column. It then adopts agreedy strategy of scanning uncovered rows in order. It picks the columnthat covers the most consecutive rows starting with the �rst row, and thenrepeats the same strategy from the topmost uncovered row.Assume that covers is a temporary array of dimension equal to A, andinitially, all xj = 0.Consecutive-Ones-Set-Cover:for (i m down to 1) dofor (j 1 to n) doif (mat[i; j] = 0) then covers[i; j] 0else if (i = m) then covers[i; j] 1else covers[i; j] covers[i+ 1; j] + 1i 0while (i � m) doScan row covers[i] for the max entry covers[i; j].xj 1i i+ covers[i; j]At the completion of this algorithm a minimal sized cover has been found, intime O(mn) which is linear in the size of the input. This simple algorithmdoes not work for weighted set cover. Ho�man [3] identi�es a broader range of7

www.manaraa.com

cases (including weights) for which a greedy algorithm does �nd the optimalsolution to a combinatoric problem in integer program formulation.4.2 Bitonic ColumnsOne natural generalization of the consecutive ones property of a matrixis what we call the mountain property: for some permutation of the rowsthe values in every column are non-decreasing to some midpoint, then non-increasing thereafter (examining entries from top to bottom). The pro�le ofeach column looks like a mountain peak. More formally, a matrix has themountain property if its rows can be permuted so that for each column jthere exists an index i such thata1j � a2j � : : : � aij � ai+1;j � : : : � amj: (5)The midpoint index i can be di�erent for each column. A symmetric prop-erty is the valley property in which the values in all columns decrease to amidpoint, then increase on the other side (in some row permutation). Sincein each case the values in a column must �rst monotonically progress in onedirection, then monotonically progress in the opposite direction, we refer tothese properties collectively as bitonic column properties.One could further generalize the bitonic column concept to allow for acombination of mountain and valley columns in the same matrix, but in thispaper we only make use of homogeneous bitonic column properties, whereevery column is a mountain, or every column is a valley.A bitonic column property is signi�cant because when the matrix is inconforming permutation we are guaranteed that each column has no non-adjacent local maxima or minima. Thus, the property is somewhat analogousto the concept of convexity, and similarly leads to e�cient algorithms.In solving a minimax program it is more convenient, for computationalpurposes, to deal with a cost matrix C where cij = 1=aij . For example, thecost matrix corresponding to the constraint matrix in (4) isx1 x2 x3 x4 x5 x63 2 1 1 3 84 1 3 1 4 48 1 1 4 10 4: (6)8

www.manaraa.com

It is easily seen that when the constraint matrix has the mountain property,the corresponding cost matrix has the valley property.In the next section we present a fast algorithm for solving minimax pro-grams when the cost matrix has the valley property. Its time complexityis linear when the number of columns is at least as large as the number ofrows. We conjecture that bitonic column properties imply e�cient solutiontechniques for other problems as well.5 Solving Minimax Programs with ValleyCostsIf the cost matrix C corresponding to a minimax program has the valleyproperty, then its rows can be permuted so that within any column the ksmallest entries are all adjacent, for any k. This situation is amenable tosolution by an e�cient algorithm, described below. A companion paper [7]gives an O(mn logm) algorithm for �nding such a permutation, if one exists.Here we assume that the input is presented as a cost matrix in conformingpermutation.The algorithm falls into the dynamic programming paradigm; conse-quently it can be conceptualized as iteratively operating on a table. Wedescribe it as constructing and then operating on a network in order to illus-trate its similarity to a shortest-path algorithm.Recall that a minimax program in standard form (3) has been normalizedso that all RHS coe�cients bi and all objective function coe�cients cj are1. The algorithm takes as input a cost matrix obtained from the constraintmatrix by the identity cij = 1=aij . We assume that the rows of the costmatrix are in a permutation where the valley property holds. If necessary,the algorithm given by Tucker [7] can be used as preprocessing to obtain aconforming permutation.The algorithm begins by constructing a network data structure consistingof m + 1 vertices, indexed 0; 1; : : : ;m. Vertices will be joined by weighted,directed arcs from vertices of smaller index to vertices of larger index.Each column can potentially contribute m arcs. An arc from vertex ito vertex j indicates the cost of \covering" rows i � 1 to j (i.e., satisfyingthe constraints imposed by those rows) by the associated column variable.9

www.manaraa.com

When two or more columns would contribute an arc joining the same pair ofvertices, we select only the best arc (i.e., the arc of minimum cost).The network arcs are constructed from the matrix entries by repeatingthe following process for each column, taking the columns in any order. (Anillustrative example follows.) First we scan down the column to discoverthe minimum value. In case of ties, any minimum value is �ne. From thatmidpoint we then start two pointers scanning in opposite directions, towardsthe top and bottom of the column. We iteratively move these pointers far-ther apart so as to discover successively higher cost coe�cients in increasingorder. Each new higher value identi�es a span of rows (between the twopointers) that is covered by setting the column variable to that cost. Aseach successively larger span is discovered, we update the network with anarc from the vertex before the �rst covered row, to the vertex correspondingto the last covered row, whose weight is the covering cost. If an arc (i; k)already exists, we set its cost to the minimum of its existing cost and thecovering cost represented by the current column. In addition, we annotateeach arc with the index of the column variable whose covering capability itrepresents. Clearly, we consider the addition of O(mn) arcs to the network,and no more than O(m2) will exist at any time, including after all columnshave been processed.An algorithmic presentation of this procedure is given as Build-Network.We assume that the network is represented as an upper triangle adjacencymatrix, so existence of an arc between two vertices can be checked in constanttime.An example of applying this procedure to the following cost matrix C isshown in Figure 1. C = 5 4 13 2 12 1 12 1 31 4 4Figure 1(a) shows the result after processing the �rst column; sub-�gures (b)and (c) show the result after processing the second and third columns.Once the row cost network has been constructed, discovery of the optimalsolution to the original problem essentially corresponds to �nding a shortestpath from v0 to vm, interpreting the arc weights as distances. In general this10

www.manaraa.com

Build-Network:Begin with vertices v0; : : : ; vm initialized for no arcs,and an m� n cost matrix c.for (1 � j � n) doScan c[; j] from the top to �nd the minimum entry c[z; j].Set min entry c[z; j]; top z; bot z.while (top > 1 or bot < m) doDecrement top and increment bot until c[top; j]and c[bot; j] are the farthest apart two column entriesthat are each � min entry and� (the smallest column entry > min entry).fIn the �rst iteration, both c[top; j]; c[bot; j]must be equal to min entry. At any time,if either top or bot reaches 1 or m, then only incrementor decrement the other.gThe arc (vtop�1; vbot) is a potential arc: add it to the networkonly if it does not already exist.Then set w(vtop�1; vbot) to the minimum of its pre-existing weight(1 if it didn't exist) and c[z; j].If we added the arc or updated its cost,also set column(vtop�1; vbot) j.Set min entry max(c[top; j]; c[bot; j]).can be done inO(V 2) or O(E log V) time by Dijkstra's algorithm. For a DAGwith a single source, such as our network, there is a well known algorithm(as described in Cormen, et al. [1]) that merely takes the vertices in orderv0; : : : ; vm�1, relaxing all arcs once, and requires only O(E) time. (Relaxationof an arc (i; j) involves conditionally updating d(j) to d(i) + w(i; j) if thatoperation decreases d(j).)However, these standard algorithms �nd only paths consisting of explic-itly represented arcs, and our network contains implicit arcs as well. Forexample, in Figure 1(c) there is an arc with weight 1 from v0 to v3 indi-cating that assigning x3 = 1 covers the �rst three rows; implicitly there11

www.manaraa.com

Figure 1: Initial Row Cost Network
0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

1 1 1

2

3 3

4

2
3 1

4

2

22

1

1

(b) (c)(a)

3

column 1
column 2
column 3

5

12

www.manaraa.com

are also weight 1 arcs connecting all pairs of vertices in fv0; v1; v2; v3g of in-creasing index. The shortest path explicitly represented in the network is(v0; v4); (v4; v5) (among others) with distance 4, but in fact there is a cover-ing path of distance 3 corresponding to arcs (v0; v3); (v2; v5). Our networkconstruction algorithm only builds a minimal set of arcs. If we were to ex-plicitly build all arcs, the amount of work required in construction wouldbe O(m2n). Alternatively, extending the standard shortest path algorithmnaively to relax all implicit arcs could require O(m3) time. Our Shortest-Path procedure relaxes only non-dominated implicit arcs, in addition to theexplicit arcs, and runs in O(m2) time.Shortest-Path iterates over all vertices in order of increasing index.For each vertex, it iterates over all arcs originating in that vertex, in order ofincreasing length. Each arc is relaxed, along with all of its (shorter) implicitarcs that are not dominated by (i.e., more expensive than) another explicitarc originating in the same vertex. At termination d(m) gives the minimumcost of a solution, and the actual variable assignments can be recovered bytracing backwards along the predecessor(i) values, from m.Shortest-Path:for (i 1 to m) dod(vi) 1d(v0) 0for (i 0 to m� 1) dolower lim ifor (each arc (i; j) in order of increasing j) dofor (k j down to lower lim) doif d(i) + w(i; j) < d(k) thend(k) d(i) + w(i; j)predecessor(k) ilower lim jFigure 2 shows the results of computing the shortest path in the networkconstructed in Figure 1. The distance of each vertex is shown within thevertex, and the weights of the two arcs constituting the shortest path are13

www.manaraa.com

Figure 2: Shortest Path Computed
1

3 1

4

2

2

1

3

0

1

1

1

2

3

column 1
column 2
column 3

14

www.manaraa.com

marked by squares. In this case, (v0; v3) from column 3 and (v2; v5) fromcolumn 1 are the optimal row covers, so the optimal solution isx1 = 2; x2 = 0; x3 = 1; Xxj = 3:5.1 CorrectnessWe will give an informal proof thatBuild-Network followed by Shortest-Path correctly yields an optimal solution to a minimax program whose costmatrix has the valley property.Note that an optimal solution to a minimax program corresponds to aminimum cost covering of the cost matrix rows. We say xj covers row i ifxj � cij because then xj � 1=aij and the ith constraint is satis�ed:maxj (aijxj) � 1:We say that a collection of arcs covers the row cost network if for everyadjacent pair of vertices vi; vi+1 the collection contains an arc (vh; vk) suchthat h � i < k:Therefore, in order to prove correctness it su�ces to establish the following:1. If the cost matrix C has the valley property, then a minimal cost cov-ering of all of C's rows corresponds one-to-one with a minimal weightset of covering arcs in the row cost network constructed by Build-Network.2. Shortest-Path �nds a minimal weight set of covering arcs in the rowcost network.First, consider an arbitrary cost matrix with the valley property. Inconsequence of the valley property de�nition, if xj covers any rows, it coversa consecutive group of rows. It should be easy to see that for such a matrixBuild-Network constructs maximum length, minimum weight arcs in therow cost network where the span and weight of an arc exactly correspond tothe rows covered by setting some xj to that weight value. In case exactlythe same span can be covered by two di�erent variables, the arc will havethe lighter covering weight and be annotated with the column index of the15

www.manaraa.com

cheaper covering variable. Consequently, if xa; : : : ; xb > 0 and all otherxj = 0 is a feasible solution, there must exist some (not necessarily distinct)arcs e1; : : : ; ek in the network such that w(e1) � xa; : : : ; w(ek) � xb andcollectively the arcs cover the network. Simultaneously, if e1; : : : ; ek is asequence of arcs that cover the network, then xa = w(e1); : : : ; xb = w(ek) isa feasible solution, where a = column(e1); : : : ; b = column(ek). From all thisit follows that an optimal solution to the minimax program corresponds toa minimum weight collection of arcs that cover the row cost network.Next we show that Shortest-Path �nds such a minimum weight col-lection of arcs. A minimum weight covering collection in the network cor-responds to a shortest path from v0 to vm if we interpret arc weights asdistances and allow any arc (vh; vk) to be used to pass from any vi to any vjso long as h � i < j � k. In e�ect, a covering collection corresponds to ashortest path when we allow that each explicit arc in the collection representsa set of implicit arcs.Shortest-Path essentially di�ers from the standard shortest-path algo-rithm for DAGs only in its handling of implicit arcs. The standard algorithmwalks through vertices v0; v1; : : : ; vm in order and relaxes all outgoing arcs. Bythe justi�cation establishing correctness of that algorithm, Shortest-Pathwould be correct if it relaxed all implicit arcs in addition to the explicit arcs.However, for an explicit arc (i; k), our algorithm only relaxes implicit arcs(i; j) where w(i; j) = w(i; k) and j < k if there does not exist a dominatingarc (i; h). Arc (i; h) dominates (i; j) ifh � j and w(i; h) < w(i; j):Our algorithm is correct if any minimum cost path can be constructed solelyfrom explicit arcs and the subset of implicit arcs that we relax.Consider any arbitrary dominated implicit arc (i; j): since it is dominatedthere must exist a closest �tting dominating explicit arc(h; k) where w(h; k) < w(i; j) and h � i < j � k;such that there does not exist any distinct dominating arc(h0; k0) where h � h0 < k0 � k:Since, in our row cost network, vertex distances are monotonically increasingwith vertex index, d(h) � d(i). By the rules for relaxation of explicit arcs,16

www.manaraa.com

the implicit arc (h; j) will be relaxed, sod(j) � d(h) + w(h; k):Relaxation of (i; j) cannot set d(j) lower thand(i) + w(i; j) > d(h) + w(h; k);so relation of dominated implicit arcs cannot improve the solution.5.2 ComplexityIt should be clear that Build-Network does O(m) work for each column,since it scans each column twice and does no more than a constant amount ofwork for each entry. (Checking whether an arc exists, and possibly updatingits entry can be done in constant time if we keep an O(m2) size array of arcdata.) The network it constructs has m + 1 vertices and O(min(m2;mn))arcs. Hence Build-Network runs in O(mn) time and uses O(m2) space.At each vertex i Shortest-Path performs exactly one relaxation for everyvertex j such that an explicit arc (i; k) exists where i < j � k. Since thearcs out of i can be found in order of decreasing length by scanning oneO(m)-length row of the arc array, Shortest-Path does O(m) work at eachvertex for an overall time complexity of O(m2).Therefore, the optimal solution of a minimax program whose cost matrixhas the valley property, and has been put in a conforming permutation, canbe discovered in O(mn+m2) time using O(m2) space, which is linear in thesize of the input when n � m.6 ApplicationsWe would like to �nish by describing a real application whose descriptionpreceded our exploration of this topic, to illustrate how the minimax programformulation can naturally capture the structure of a practical optimizationproblem.Huang's thesis [4] on software dependability measurement investigated ametric called trustability (T) that represents the degree of con�dence thata program being tested is free of faults. If D represents the probability of17

www.manaraa.com

detecting a fault by applying a particular stochastic test method, then afterN error-free applications of that test method, the trustability of the programis T = 1 � (1 �D)N :(We have slightly simpli�ed Huang's formulae for this presentation.) Moregenerally, suppose there are m fault classes and n test methods, then trusta-bility after an uninterrupted series of successful tests isT = 1� max1�i�mf min1�j�nf(1�Dij)Njgg (7)where Dij is the probability that method j detects a fault in class i, and Njis the number of times method j has been applied. Equation (7) has a max-min structure because the testing methods are assumed to be probabilistic,so their e�ects are independent, rather than additive.An optimization problem that arises in this context is to minimize theamount of e�ort devoted to testing,E = nXi=1 cjNjsubject to the constraint that a minimal value of T � T0 is attained. Thisproblem can be converted to a minimax program of form (3) where xj = Njand aij = log(1�Dij)cj log(1� T0) :AcknowledgmentsWe are very grateful to Dr. Alan J. Ho�man for references and commentsthat helped to clarify this material.References[1] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introductionto Algorithms. MIT Press, Cambridge, MA, 1990.18

www.manaraa.com

[2] Fulkerson, D. R., and Gross, O. A. Incidence matrices and intervalgraphs. Paci�c Journal of Mathematics 15 (1965), 835{855.[3] Hoffman, A. J. On simple combinatorial problems. Discrete Mathe-matics 106/107 (1992), 285{289.[4] Huang, Y. Software Dependability Measurement during Testing. PhDthesis, University of California, San Diego, La Jolla, CA, 1994.[5] Keil, J. M. Finding Hamiltonian circuits in interval graphs. InformationProcessing Letters 20 (1985), 201{206.[6] Marathe, M. V., Ravi, R., and Rangan, C. P. Generalized vertexcovering in interval graphs. Discrete Applied Mathematics 39 (1992),87{93.[7] Tucker, P. A. E�cient testing for a bitonic column property. Tech.Rep. CS97-546, Department of Computer Science and Engineering, Uni-versity of California, San Diego, June 1997.

19

